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Abstract

The complex Minkowski phase space has the physical interpretation of the phase space of the scalar
massive conformal particle. The aim of the paper is the construction and investigation of the quantum
complex Minkowski space.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Extending the Poincaré group by dilation and acceleration transformations, one obtains the con-
formal group SU(2, 2)/Z4, which is the symmetry group of the conformal structure of compact-
ified Minkowski space-time M, where Z4 = {ikid : k = 0, 1, 2, 3} is the centralizer of SU(2, 2).
According to the prevailing point of view SU(2, 2)/Z4 is the symmetry group for physical models
which describe massless fields or particles, but has no application to the theory of massive objects.
However, using the twistor description [1] of Minkowski space-time and the orbit method [2],
the different orbits of SU(2, 2)/Z4 in the conformally compactified complex Minkowski space
M := MC may be considered to be the classical phase spaces of massless and massive scalar
conformal particles, antiparticles and tachyons, see [3,4].

The motivation for various attempts to construct models of non-commutative Minkowski space-
time is the belief that this is the proper way to avoid divergences in quantum field theory [5]. Here,
on the other hand, our aim is to quantize the classical phase spaceM++ ⊂ Mof the massive particle
by replacing it by the Toeplitz-like operator C∗-algebra M++. To this end we first quantize the
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classical states of the massive scalar conformal particle by constructing the coherent state map
K : M++ → CP(H) ofM++ into the complex projective Hilbert space CP(H), i.e. the space of
the pure states of the system. In the next step we define the Banach algebra P++

of annihilation
operators as the ones having the coherent states K(m), m ∈ M++, as eigenvectors. Finally, the
quantum phase space M++ will be the C∗-algebra generated by P++

.
Let us remark that application of the above method of quantization to the case of R2N phase

space leads to the Heisenberg–Weyl algebra. In our construction the conformal group and M++
are related in exactly the same way as are the Heisenberg group and the Heisenberg–Weyl algebra.

The conformally compactified Minkowski space M can be reconstructed from M++ as the
Šilov boundary of the interior of the spectrum of the commutative Banach algebra P++. It can
also be considered in the framework of Kostant–Souriau quantization as the SU(2, 2)/Z4-invariant
configuration space for the phase space T ∗M. Similarly, if we consider the holomorphic model
[4], see Sections 2 and 3, the classical conformal phase space M++ has the interpretation of
the configuration space constructed by the SU(2, 2)/Z4-invariant Kähler polarization. In [4] a
model of the classical field theory onM++ was proposed. This paper is an effort, developing the
results presented in [6], to construct a quantum description of the conformal massive particle,
see Section 4. In Section 5 the physical interpretation of the quantum phase space M++ is
discussed.

2. Complex Minkowski space as the phase space of the conformal scalar massive
particle

Following [3,7,4], we present the twistor description of phase spaces of the conformal scalar
massive particles. Let us recall that twistor space T is C4 equipped with a Hermitian form η of
signature (+ + −−). The symmetry group of T is the group SU(2, 2), where g ∈ SU(2, 2) iff
g†ηg = η and det g = 1.

In relativistic mechanics the elementary phase spaces are given by the coadjoint orbits of the
Poincaré group, see [8], which are parametrized in this case by mass, spin, and signature of the
energy of the relativistic particle. Similarly, elementary phase spaces for conformal group one
identifies with its coadjoint orbits. Since conformal Lie algebra su(2, 2) is simple we will identify
its dual su(2, 2)∗ with su(2, 2) using Cartan–Killing form:

〈X, Y〉 = 1
2 Tr(XY ), (2.1)

whereX, Y ∈ su(2, 2). Thus the coadjoint representation Ad∗
g : su(2, 2)∗ → su(2, 2)∗ is identified

with the adjoint one

AdgX = gXg−1, (2.2)

where g ∈ SU(2, 2). For the complete description and physical interpretation of Ad∗(SU(2, 2))-
orbits see [9,7].

One defines the compactified complex Minkowski space M as the Grassmannian of two-
dimensional complex vector subspaces w ⊂ T of the twistor space and SU(2, 2) acts onM by

σg : w → gw. (2.3)

The GrassmannianM splits into the orbitsMkl indexed by the signatures of the restricted Hermitian
forms sign η|z = (k, l), where k, l = +,−, 0.
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The orbit M00 consisting of subspaces isotropic with respect to η is the conformal compacti-
fication M of real Minkowski space andM is the complexification of M = M00.

The cotangent bundle T ∗M00 → M00 is isomorphic with the vector bundle {(x,X) ∈ M00 ×
su(2, 2) : imX ⊂ x ⊂ kerX} =: N

pr1→M00, where pr1 is the projection on the first component of
the productM00 × su(2, 2). The vector bundle isomorphism T ∗M00 ∼= N is defined by the follow-
ing sequence T ∗

xM
00 ∼= (su(2, 2)�su(2, 2)x)∗ ∼= {X ∈ su(2, 2) : TrYX = 0; ∀Y ∈ su(2, 2)x} ∼=

{X ∈ su(2, 2) : imX ⊂ x ⊂ ker X} = pr−1
1 (x) of the vector space isomorphisms.

There exists a conformal structure on N defined by the cones Cx := {X ∈ pr−1
1 (x) :

dimR imX ≤ 1} ⊂ pr−1
1 (x) ∼= T ∗

xM
00, x ∈ M00. This conformal structure is invariant with re-

spect to the action of SU(2, 2) on N defined by

αg : (x,X) 
→ (gx, gXg−1) (2.4)

for g ∈ SU(2, 2).
The eight-dimensional orbits of the action (2.4) are: the bundle N++ → M00 of upper halves

of the interiors of the cones, the bundleN−− → M00 of bottom halves of the interiors of the cones
and the bundle N+− → M00 of exteriors of the cones.

Similarly, the action (2.3) of SU(2, 2) on M generates three eight-dimensional orbits: M++,
M−− andM+−.

One has maps J0 : Ñ → su(2, 2) and Jλ : M̃ → su(2, 2) of Ñ := N++ ∪ N−− ∪ N+− and
M̃ := M++ ∪M−− ∪M+− into su(2, 2) defined by:

J0(x,X) := X, (2.5)

Jλ(w) := iλ(πw − πw⊥ ), (2.6)

where ⊥: M̃ 
→ M̃ is the involution, which mapsw ∈ M̃ on its orthogonal complementw⊥ (with
respect to the twistor forms η) and πw : T 
→ T and πw⊥ : T 
→ T are the projections defined by
the decomposition T = w⊕ w⊥.

The maps J0 and Jλ are equivariant with respect to the actions α and σ respectively and
Ad-action of the conformal group. Thus J0 maps N++, N+−, N−− on the eight-dimensional
nilpotent Ad-orbits and Jλ maps M++,M++,M++ on the eight-dimensional simple Ad-orbits
which consist ofX ∈ su(2, 2) with eigenvalues iλ and −iλ. Using the Kirillov construction [2] we
obtain the conformally invariant symplectic formω0 on Ñ (identical with the canonical symplectic
form of T ∗M00) and the conformally invariant Kähler form ωλ on M̃. So (Ñ, ω0) and (M̃, ωλ) are
eight-dimensional conformal symplectic manifolds with momentum maps given by (2.5), (2.6).

In order to show that Ñ and M̃have a physical interpretation of the phase spaces of the conformal
scalar massive particles, let us take the coordinate description of the presented models. We fix an
element ∞ ∈ M00, called point at infinity. One defines the Minkowski space M00∞ as the affine
space of elementsw ∈ M00 which are transversal to ∞, i.e.w⊕ ∞ = T. The elementsw ∈ M00

which intersect with ∞ in more than one-dimension, i.e. dimC(w ∩ ∞) ≥ 1, form a cone C∞ at
infinity, so

M00 = M00
∞ ∪ C∞ ∼= S1 × S3.

The cones Cx = {x′ ∈ M00 : dimC(x ∩ x′) ≥ 1} define a conformal structure on M00, invariant
with respect to the conformal group action given by (2.3). The Poincaré group P∞ extended
by the dilations is defined as the stabilizer (SU(2, 2)/Z4)∞ of the element ∞. The intersections
of the stabilizers (SU(2, 2)/Z4)∞ ∩ (SU(2, 2)/Z4)0, where 0 ∈ M00∞ is the origin of the inertial
coordinates system, is the Lorentz group extended by dilations. One defines the Lorentz group
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L0,∞ and the group of dilations D0,∞ respectively as the commutator and the centralizer of
(SU(2, 2)/Z4)∞ ∩ (SU(2, 2)/Z4)0 respectively. Finally, the group of Minkowski space transla-
tions T∞ consists of the elements exp X, whereX ∈ su(2, 2) satisfies imX ⊂ ∞ ⊂ ker X, while
the elements exp X fulfilling imX ⊂ 0 ⊂ ker X, define the commutative subgroup A0 of four-
accelerations.

Let us assume in the following that

η = i

(
0 σ0

−σ0 0

)
, ∞ =

{(
ζ

0

)
: ζ ∈ C2

}
, 0 =

{(
0

ζ

)
: ζ ∈ C2

}
,

(2.7)

where we use the 2 × 2 matrix representation with Pauli basis:

σ0 =
(

1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0

0 −1

)

in Mat2×2(C). This choice of η,∞, 0 gives us the decomposition

su(2, 2) = T∞ ⊕ L0,∞ ⊕ D0,∞ ⊕ A0, (2.8)

where the subalgebras of four-translations, Lorentz, dilations and four-accelerations are given
respectively by

T∞ =
{(

0 T

0 0

)
: T = T † ∈ Mat2×2(C) and T = tµσµ

}
, (2.9a)

L0,∞ =
{(

L 0

0 −L†

)
: TrL = 0 andL ∈ Mat2×2(C)

}
, (2.9b)

D0,∞ =
{
d

(
σ0 0

0 −σ0

)
: d ∈ R

}
, (2.9c)

A0 =
{(

0 0

C 0

)
: C = C† ∈ Mat2×2(C) andC = cµσµ

}
. (2.9d)

The basis of su(2, 2)∗ ∼= su(2, 2) dual to the one defined by Pauli matrices in the Lie subalgebras
T∞,L0,∞,D0,∞,A0 is

T∗
∞ � P∗

µ =
(

0 0

σµ 0

)
, (2.10a)

L∗
0,∞ � L∗

kl =
1

2
εklm

(
σm 0

0 σm

)
, L∗

0,∞ � L∗
0k = 1

2

(
σk 0

0 −σk

)
, (2.10b)

D∗
0,∞ � D∗ = 1

2

(
σ0 0

0 −σ0

)
, (2.10c)

A∗
0 � B∗

ν =
(

0 σν

0 0

)
. (2.10d)
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One has the matrix coordinate map

M∞ � w 
→ W ∈ Mat2×2(C) (2.11)

defined by

w =
{(

Wζ

ζ

)
: ζ ∈ C2

}
(2.12)

and w = x ∈ M00∞ iff W = W† = X. The element (x,X) ∈ pr−1
1 (M00∞) is parametrized by

(x,X) 
→
(
X,

[
XS −XSX
S −SX

])
, (2.13)

where X, S ∈ H(2) and H(2) is the vector space of 2 × 2 Hermitian matrices.
The momentum maps (2.5) and (2.6) in the above defined coordinates are given by

J0(X, S) =
[
XS −XSX
S −SX

]
, (2.14)

Jλ(W) = iλ

[
(W +W†)(W −W†)−1 −2W(W −W†)−1W†

2(W −W†)−1 −σ0 − 2(W −W†)−1W†

]
. (2.15)

By decomposing J0(X, S) in the basis (2.10)J0(X, S) = pµP∗
µ +mµνL∗

µν + aµA∗
ν + dD∗ we

obtain the expressions

pµ = sµ, (2.16)

mµν = xµpν − xνpµ, (2.17)

d = xµpµ, (2.18)

aµ = −2(xνpν)xµ + x2pµ (2.19)

for the four-momentum pµ, relativistic angular momentummµν, dilation d and four-acceleration
aν respectively, where S = sµσµ,X = xµσµ.

In the coordinates xµ, pµ = sµ the symplectic form ω0 assumes the canonical form

ω0 = dxµ ∧ dpµ. (2.20)

Similarly, from Jλ(W) = pµP∗
µ +mµνL∗

µν + aµA∗
ν + dD∗ we obtain

pν = λ
yν

y2 , (2.21)

mµν = xµpν − pνxµ, (2.22)

d = xµpµ, (2.23)

aµ = −2(xνpν)xµ + x2pµ − λ2

p2pµ, (2.24)

where the real coordinates xµ, yµ on M̃ are defined by xν + iyν = wν := 1
2 Tr(Wσν).
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The coordinate description of ωλ is the following

ωλ = iλ
∂2

∂wµ∂w̄ν
log(w− w̄)2 dwµ ∧ dw̄ν = dxν ∧ dpν. (2.25)

Concluding, one has two models (N, ω0) and (M, ωλ) of the massive scalar conformal particle.
Using the canonical coordinates (xµ, pν) common for both models we obtain that

(i) the element (x,X) ∈ N++(w ∈ M++) iff p0 > 0 and (p0)2 − �p2 > 0, i.e. it describes the
state of a conformal scalar massive particle;

(ii) the element (x,X) ∈ N−−(w ∈ M−−) iff p0 < 0 and (p0)2 − �p2 > 0, i.e. it describes the
state of a conformal scalar massive anti-particle;

(iii) the element (x,X) ∈ N+−(w ∈ M+−) iff (p0)2 − �p2 < 0, i.e. it describes the state of a
conformal scalar tachyon.

The orbitsN0+ (M0+) andN0− (M0−) describe the states of massless particles and anti-particles
but this case will not be discussed further.

Two above presented models do not differ if one considers them on the level of relativistic
mechanics, since both of them behave towards Poincaré transformations in the same way. The
difference appears if one considers the four-acceleration transformations parametrized by C =
cµσµ, which in canonical coordinates X = xµσµ, P = pµσµ are

X̃ = X(CX+ σ0)−1, (2.26)

P̃ = (CX+ σ0)P(XC + σ0) (2.27)

for the standard model Ñ and

X̃ = [XP + iλσ0 − iλ(XC − iλP−1C + σ0)](CXP + iλC + P)−1, (2.28)

P̃ = (CX+ σ0)P(XC + σ0) + λ2CP−1C (2.29)

for the holomorphic model M̃. We see from (2.29) that in the holomorphic model (opposite to the
standard one) the four-momentum P = pµσµ transforms in a non-linear way. This fact implies
a lot of important physical consequences, e.g. the conformal scalar massive particle cannot be
localized in the space-time in conformally invariant way. From (2.24), (2.28), (2.29) it follows
that the holomorphic model corresponds to the nilpotent one when λ → 0.

3. Conformally invariant quantum Kähler polarization

In this section we shall make the first step in the direction to construct quantum conformal
phase space. Since the case of the antiparticle can be transformed by the charge conjugation map
to the particle one, see [4], and the tachyon case is less interesting from physical point of view,
we will work only with the phase spaceM++ of the conformal scalar massive particle.

The phase space T ∗M00 has the real conformally invariant polarization defined by the leaves
of its cotangent bundle structure. In canonical coordinates this polarization is spanned by the

vector fields
{

∂
∂pν

}
ν=0,...,3

. For the holomorphic phase space M̃ the conformally invariant polar-

ization is Kähler and in the complex coordinate it is spanned by
(

∂
∂w̄µ

)
µ=0,...,3. The reason is that
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SU(2, 2)/Z4 acts on M̃ by biholomorphism. For g =
(
A B

C D

)
∈ SU(2, 2) and w ∈ M++ one

has

σgW = (AW + B)(CW +D)−1, (3.1)

whereW ∈ Mat2×2(C) is the matrix holomorphic coordinate ofw ∈ M++. Using complex matrix
coordinates (2.12) one identifiesM++ with the future tube

T := {W ∈ Mat2×2 : imW > 0}. (3.2)

Applying the Caley transform

Z = (W − iE)(W + iE)−1, W = i(Z + E)(Z − E)−1 (3.3)

we map T on the symmetric domain

D := {Z ∈ Mat2×2(C) : E − Z∗Z > 0}. (3.4)

Let us remark here that the coordinates Z ∈ D correspond to the diagonal representation of the

twistor form η =
(
σ0 0

0 −σ0

)
. Below we use both systems of coordinates.

In order to quantize M++ we will use the method of coherent state map investigated in [10].
For the other construction of noncommutative manifolds by using coherent state method see also
[11]. The essence of this method consists in replacing the classical statem ∈ M++ by the quantum
pure state, which means, that one defines the map Kλ : M++ 
→ CP(H) from the classical phase
spaceM++ into the complex projective separable Hilbert spaceCP(H). We will call Kλ coherent
state map and in our case we will postulate that it has the following properties:

(i) Kλ is consistent with the conformal symmetry, i.e. there exists an unitary irreducible repre-
sentation Uλ : SU(2, 2) 
→ AutHwith respect to which the coherent state map is equivariant:

(3.5)

(ii) Kλ is consistent with the holomorphic polarization
(

∂
∂w̄µ µ=0,...,3

)
. This denotes that Kλ is

a holomorphic map.
(iii) Kλ is symplectic, i.e.

K∗
λωFS = ωλ, (3.6)

where ωFS is Fubini-Study form on CP(H). The projective Hilbert space is considered here
as Kähler manifold (thus symplectic manifold). This condition one needs for the consistence
of classical dynamics with quantum dynamics.

The coherent state map Kλ : M++ 
→ CP(H) fulfilling the properties postulated above one
obtains by the applying of the representation theory, see [12,13]. We skip here the technical
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considerations and present only the final result. Let{∣∣∣∣∣
j m

j1 j2

〉}
, (3.7)

where m, 2j ∈ N ∪ {0} and −j ≤ j1, j2 ≤ j, denote an orthonormal basis in H, i.e.〈
j m

j1 j2

∣∣∣∣∣
j′ m′

j′1 j′2

〉
= δjj′δmm′δj1j

′
1
δj2j

′
2
. (3.8)

Then the map Kλ : M++ ∼= D 
→ H given by

Kλ : Z → |Z; λ〉 :=
∑

j,m,j1,j2

∆
jm
j1j2

(Z)

∣∣∣∣∣
j m

j1 j2

〉
, (3.9)

where

∆
jm
j1j2

(Z) : = (Nλjm)−1(det Z)m
√

(j + j1)!(j − j1)!

(j + j2)!(j − j2)!

×
∑

S≥max{0,j1+j2}
S≤min{j+j1,j+j2}

(
j + j2

S

)(
j − j2

S − j1 − j2

)

× zS11z
j+j1−S
12 z

j+j2−S
21 z

S−j1−j2
22 (3.10)

and

Nλjm := (λ− 1)(λ− 2)2(λ− 3)
Γ (λ− 2)Γ (λ− 3)m!(m+ 2j + 1)!

(2j + 1)!Γ (m+ λ− 1)Γ (m+ 2j + λ)
, (3.11)

defines a coherent state map

[Kλ] =: Kλ : M++ 
→ CP(H) (3.12)

with the properties mentioned in assumptions: (i), (ii), (iii). The condition (i) restricts the variability
of the parameter λ > 3 to integer numbers.

From now on, to simplify the notation, we will write |Z〉 instead of |Z; λ〉. If the dependence
on λ is relevant we will write |Z; λ〉.

The projectors |Z〉〈Z|
〈Z|Z〉 representing the coherent states give the resolution of the

identity

1 =
∫
D

|Z〉〈Z| dµλ(Z,Z†) (3.13)

with respect to the measure

dµλ(Z,Z†) = cλ[det(E − Z†Z)]λ−4| dZ|, (3.14)

where |dZ| is the Lebesgue measure on D and

cλ = π−4(λ− 1)(λ− 2)2(λ− 3), (3.15)

which is equivalent to
∫
D

dµλ = 1.
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Hence, by the anti-linear monomorphism

Iλ : H � |ψ〉 → 〈ψ|·; λ〉 := ψ(·) ∈ O(D) (3.16)

one identifies H with the range of Iλ in O(D), which is equal to the Hilbert space of holomorphic
functions L2O(D, dµλ) square integrable with respect to the measure (3.14).

The representation Iλ ◦ Uλ ◦ I−1
λ acts on L2O(D, dµλ) by

(Iλ ◦ Uλ(g) ◦ I−1
λ )ψ(Z) = [det(∼ CZ+ ∼ D)]−λψ(σg−1(Z)), (3.17)

where g−1 =
(∼ A ∼ B

∼ C ∼ D

)
i.e. it is a discrete series representation of SU(2, 2) and acts on the

coherent states by

Uλ(g)|Z〉 = [det(CZ +D)]−λ|σg(Z)〉, (3.18)

where g =
(
A B

C D

)
∈ SU(2, 2), see [14,15].

The 15 physical quantities pν, mµν, d and aν, µ, ν = 0, 1, 2, 3, which characterize the scalar
massive conformal particle form the conformal Lie algebra su(2, 2) with respect to the Poisson
bracket

{f, g}λ(w̄, w) = i

2λ
((w− w̄)2ηµν − 2(wµ − w̄µ)(wν − w̄ν))

×
(
∂f

∂wµ

∂g

∂w̄ν
− ∂g

∂wµ

∂f

∂w̄ν

)
(3.19)

defined by the symplectic form ωλ. Each one of them defines a Hamiltonian flow σg(t) on M++
realized by the corresponding one-parameter subgroup g(t), t ∈ R, of SU(2, 2). By the equivari-
ance condition (4.35) this Hamiltonian flow σg(t) is quantized to the Hamiltonian flow on CP(H)
given by the one-parameter subgroup Uλ(g(t)) of representation (3.18). The generators of these
one-parameter subgroups are realized in L2O(T, dµλ) as follows:

p̂µ = −i ∂

∂wµ
, (3.20)

ˆmµν = −i
(
wµ

∂

∂wν
− wν

∂

∂wµ

)
, (3.21)

d̂ = −2iwµ
∂

∂wµ
− 2iλ, (3.22)

âν = −iw2(δβν − 2wνw
β)

∂

∂wβ
+ 2iλwν, (3.23)

see [6]. They are quantized versions of their classical counterparts given by (2.16)–(2.19). The
measure dµλ in the future tube representation is given by

dµλ(W,W†) = 2−4[det(W −W†)]λ−4| dW |. (3.24)

It was shown in [10] that the coherent state method of quantization is equivalent to the Kostant–
Souriou geometric quantization.

Besides generators (2.16)–(2.19) of the conformal Lie algebra su(2, 2) there is also reason
to quantize other physically important observables. In particular case the ones belonging to the
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family O++(D) consisting of complex valued smooth functions f : M++ → C for whose there
exists bounded operators a(f ) ∈ L∞(H) such that

a(f )|Z〉 = f (Z)|Z〉 (3.25)

for any Z ∈ D ∼= M++. Since the coherent states |Z〉 form a linearly dense subset of H one has
correctly defined linear map a : O++(D) → L∞(H) of O++(D) in the Banach algebra of the
bounded operators.

It follows immediately from (3.25) and the resolution of identity (3.13) that

(i) O++(D) is the commutative algebra and f ∈ O++(D) is holomorphic.
(ii) The map a : O++(D) → L∞(H) is an isometric

‖a(f )‖∞ = ‖f‖sup = sup
Z∈D

|f (Z)| (3.26)

monomorphism of algebras.
(iii) The image a(O++(D)) is uniformly closed in L∞(H) (i.e. with respect to operator norm

‖ · ‖∞).

Hence, O++(D) is a Banach subalgebra of the Banach algebraH∞(D) of functions which are
holomorphic and bounded on D. Let us remark here that completeness of H∞(D) follows from
the Weierstrass theorem, see e.g. [16].

Indeed one has the following proposition.

Proposition 1. The Banach algebra O++(D) is equal to H∞(D).

Proof. Since Iλ(H) = L2O(D, dµλ) we have f 〈ψ|·〉 ∈ Iλ(H) for any f ∈ H∞(D). The mul-
tiplication operator Mf : L2O(D, dµλ) → L2O(D, dµλ) is bounded. Thus there is a bounded
operator a(f )∗ : H → H such that

f (Z)〈ψ|Z〉 = 〈a(f )∗ψ|Z〉 (3.27)

for Z ∈ D. The above shows that a(f ) = (a(f )∗)∗ fulfills (3.25). �

According to [17] we shall call the commutative Banach algebra P++ := a(H∞(D))
the quantum Kähler polarization and its elements a(f ) ∈ P++ the annihilation
operators.

The coordinate functions fkl(Z) := zkl, where k, l = 1, 2 belong to H∞(D). Therefore akl :=
a(fkl) ∈ P++ and their action on the basis (3.7) is given by

a11

∣∣∣∣∣
j m

j1 j2

〉
=
√

(j − j1 + 1)(j − j2 + 1)m

(2j + 1)(2j + 2)(m+ λ− 2)

∣∣∣∣∣∣∣∣
j + 1

2
m− 1

j1 − 1

2
j2 − 1

2

〉

+
√

(j + j1)(j + j2)(m+ 2j + 1)

(m+ 2j + λ− 1)2j(2j + 1)

∣∣∣∣∣∣∣∣
j − 1

2
m

j1 − 1

2
j2 − 1

2

〉
, (3.28)
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a12

∣∣∣∣∣
j m

j1 j2

〉
= −

√
(j − j1 + 1)(j + j2 + 1)m

(2j + 1)(2j + 2)(m+ λ− 2)

∣∣∣∣∣∣∣∣
j + 1

2
m− 1

j1 − 1

2
j2 + 1

2

〉

+
√

(j + j1)(j − j2)(m+ 2j + 1)

(m+ 2j + λ− 1)2j(2j + 1)

∣∣∣∣∣∣∣∣
j − 1

2
m

j1 − 1

2
j2 + 1

2

〉
, (3.29)

a21

∣∣∣∣∣
j m

j1 j2

〉
= −

√
(j + j1 + 1)(j − j2 + 1)m

(2j + 1)(2j + 2)(m+ λ− 2)

∣∣∣∣∣∣∣∣
j + 1

2
m− 1

j1 + 1

2
j2 − 1

2

〉

+
√

(j − j1)(j + j2)(m+ 2j + 1)

(m+ 2j + λ− 1)2j(2j + 1)

∣∣∣∣∣∣∣∣
j − 1

2
m

j1 + 1

2
j2 − 1

2

〉
, (3.30)

a22

∣∣∣∣∣
j m

j1 j2

〉
=
√

(j + j1 + 1)(j + j2 + 1)m

(2j + 1)(2j + 2)(m+ λ− 2)

∣∣∣∣∣∣∣∣
j + 1

2
m− 1

j1 + 1

2
j2 + 1

2

〉

+
√

(j − j1)(j − j2)(m+ 2j + 1)

(m+ 2j + λ− 1)2j(2j + 1)

∣∣∣∣∣∣∣∣
j − 1

2
m

j1 + 1

2
j2 + 1

2

〉
.

(3.31)

In the expressions above we put by definition∣∣∣∣∣
j m

j1 j2

〉
:= 0

if the indices do not satisfy the condition m, 2j ∈ N ∪ {0} and −j ≤ j1, j2 ≤ j.
The coordinate annihilation operators akl, k, l = 1, 2 generate Banach subalgebraP++

pol ofP++.

Let us denote by Pol(D̄) the algebra of polynomials of variables {zkl}, k, l = 1, 2 restricted to the
closure D̄ of D in Mat2×2(C).

For the following considerations let us fix the matrix notation

A :=
(
a11 a12

a21 a22

)
∈ P++

pol ⊗ Mat2×2(C), (3.32)

A+ :=
(
a∗

11 a∗
21

a∗
12 a∗

22

)
∈ P++

pol ⊗ Mat2×2(C) (3.33)
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for the annihilation and creation operators. For example, in this notation the property (3.25)
assumes the form

A|Z〉 = Z|Z〉. (3.34)

Proposition 2.

(i) P++
pol is isometrically isomorphic to the closure Pol(D̄) of Pol(D̄), i.e. a(f ) ∈ P++

pol iff f is

continuous on D̄ and holomorphic on D. The space of maximal ideals of the P++
pol (the

spectrum) is homeomorphic to D̄.
(ii) P++

pol is a semisimple Banach algebra, i.e. if p ∈ P++
pol is such that for each c ∈ C there exists

(1 + cp)−1 then p = 0.
(iii) P++

pol � P++, i.e. it is proper Banach subalgebra of P++.

(iv) The vacuum state is cyclic with respect to the Banach algebra P++
pol .

Proof.

(i) For Z,W ∈ D̄ and α ∈ [0, 1] one has

v†(E − [αZ + (1 − α)W]†[αZ + (1 − α)W])v

= ‖v‖2 − ‖[αZ + (1 − α)W]v‖2 ≥ ‖v‖2 − {α‖Zv‖ + (1 − α)‖Wv‖}2

≥ ‖v‖2 − {α‖v‖ + (1 − α)‖v‖}2 = 0, (3.35)

for each v ∈ C2, what gives αZ + (1 − α)W ∈ D̄. So, D̄ is convex bounded subset of
Mat2×2(C). Thus D̄ is polynomially convex and compact. By definition P++

pol has a finite
number of generators. Hence statement (i) is valid, see for example Chapter 7 of [18].

(ii) We recall that the radical of algebra P++ is

R = {b ∈ P++ : (b+ λI) is invertible for any λ �= 0}. (3.36)

Statement (ii) is valid since every b ∈ P++ has non-zero eigenvalue.
(iii) To prove this it is enough to find a function f ∈ H∞(D) such that f /∈ Pol(D̄). For example

the function

f (Z) = exp
Tr(Z + E)

Tr(Z − E)
(3.37)

has this property.
(iv) It is enough to check that∣∣∣∣∣

j m

j1 j2

〉
= ∆

jm
j1j2

(A†)

∣∣∣∣∣
0 0

0 0

〉
(3.38)

and notice that operator ∆jmj1j2
(A†) ∈ P++

pol . �

We define the action of the g ∈ SU(2, 2) on A by

Uλ(g)AUλ(g−1) :=
(
Uλ(g)a11Uλ(g−1) Uλ(g)a12Uλ(g−1)

Uλ(g)a21Uλ(g−1) Uλ(g)a22Uλ(g−1)

)
, (3.39)
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where SU(2, 2) � g → Uλ(g) ∈ Aut(H) is discrete series representation defined by (3.17). Using
the above notation we formulate the following statement.

Proposition 3. One has

(i) σg(A) := (AA+ B)(CA+D)−1 ∈ P++
pol ⊗Mat2×2(C), (3.40)

(ii) Uλ(g−1)AUλ(g) = σg(A), (3.41)
for g ∈ SU(2, 2).

Proof.

(i) For

g =
(
A B

C D

)
∈ SU(2, 2)

one has

DD† = E + CC†. (3.42)

So eigenvalues of DD† satisfy d1, d2 ≥ 1, which implies that

‖D−1CZ‖2 ≤ ‖D−1C(D−1C)†‖ = ‖D−1(DD† − E)D†−1‖
= ‖E −D−1D†−1‖ < 1 (3.43)

for Z ∈ D̄. The above gives that the inverse (D+ CZ)−1 = (E +D−1CZ)−1D−1 exists for
Z ∈ D̄. Since det(CZ +D) is continuous function of Z and det(CZ +D) �= 0 for z ∈ D̄ there
exists Ω ⊃ D̄ such that det(CZ +D) �= 0 for all z ∈ Ω. This shows that the matrix function

σg(Z) = (AZ+ B)(CZ+D)−1 (3.44)

is holomorphic on Ω. So, by the Oka–Weil theorem, see [18,19], there is a sequence {pn}
of polynomials in z11, z12, z21, z22 with pn → σg uniformly on D̄. Since P++

pol
∼= Pol(D̄) one

proves σg(A) ∈ P++
pol ⊗ Mat2×2(C).

(ii) Let us note that for a linearly dense set of the coherent states |Z〉, Z ∈ D,

Uλ(g−1)AUλ(g)|Z〉 = σg(A)|Z〉 (3.45)

which gives (3.41). �

We conclude immediately from Proposition 3.

Corollary 4. Banach subalgebra P++
pol ⊂ L∞(H) is invariant Uλ(g)P++

pol Uλ(g−1) ⊂ P++
pol , g ∈

SU(2, 2) with respect to the discrete series representation.

Let us make a closing remark that quantum polarization P++ gives holomorphic operator
coordinatization for the classical phase space M++ and subalgebra P++

pol ⊂ P++ gives the coor-
dinatization ofM++ algebraic in the annihilation operators.
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4. Conformal Kähler quantum phase space

The holomorphic quantum coordinatization of the classical phase spaceM++ by the operator
Banach algebra P++ is not sufficient from the physical point of view. The reason is that the
complete quantum description of the scalar conformal particle also requires self-adjoint operators,
for example such as those given by (3.20)–(3.23). Therefore, we are obliged to include in our
considerations the Banach algebra P++ generated by the creation operators a∗

kl, k, l = 1, 2, which
by definition are conjugated counterparts of the annihilation operators. The algebra P++ gives
anti-holomorphic quantum coordinatization of M++. From Proposition 3 it follows that P++ as
well as P++ are conformally invariant quantum Kähler polarizations on M++. Then, following
[17], we shall call the operatorC∗-algebraM++ ⊂ L∞(H) generated byP++ the quantum Kähler
phase space of the scalar conformal particle. We shall denote by M++

pol the proper C∗-subalgebra

of M++ generated by P++
pol � P++.

The relation between the quantum phase space M++ and its classical mechanical counterpart
M++ is best seen by the covariant and contravariant symbols description.

For any bounded operator F ∈ L∞(H) one defines the two-covariant symbol

〈F 〉2(Z†, V ) := 〈Z|FV 〉
〈Z|V 〉 . (4.1)

The two-contravariant symbol f is defined as an element of the space B2(D× D) of complex
valued functions on D× D for which the integral

F = Fλ(f ) := c2
λ

∫
D×D

f (Z†, V )
|Z〉〈Z|V 〉〈V |
〈Z|Z〉〈V |V 〉 dµ(Z†, Z) dµ(V †, V ) (4.2)

exists weakly and Fλ(f ) ∈ L∞(H), where the measure dµ is defined by

dµ(Z†, Z) = det(E − Z†Z)−4 |dz| . (4.3)

We define:

(i) the associative product

(f •λ g)(Z†,W) : = = c2
λ

∫
D×D

f (Z†, V )g(S†,W)

× 〈Z|V 〉〈V |S〉〈S|W〉
〈Z|W〉〈V |V 〉〈S|S〉 dµ(V †, V ) dµ(S†, S)

=
∫
D×D

f (Z†, V )g(S†,W)
〈Z|V 〉〈V |S〉〈S|W〉

〈Z|W〉
× dµλ(V †, V ) dµλ(S†, S), (4.4)

of the two-contravariant symbols f, g ∈ B2(D× D);
(ii) the seminorm

‖f‖ := ‖Fλ(f )‖∞ (4.5)

and the involution

f ∗(Z†, V ) := f (V,Z†) (4.6)
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of the two-contravariant symbol. The map Fλ : B2(D× D) → L∞(H) is an epimorphism of
algebras with involution and

kerFλ = {f ∈ B2(D× D) : ‖f‖ = 0}. (4.7)

Thus the quotient algebra B2(D× D)/kerFλ and L∞(H) are isomorphic as C∗-algebras. Since
each equivalence class [f ] = f + kerFλ is represented in a unique way by the two-covariant
symbol 〈Fλ(f )〉2, i.e. [f ] = 〈Fλ(f )〉2 + kerFλ and 〈Fλ(f )〉2 = 〈Fλ(g)〉2 iff f − g ∈ kerFλ,
then the quotient vector space B2(D× D)/kerFλ is isomorphic with the vector space

B2(D× D) := {〈F 〉2 : F ∈ L∞(H)} (4.8)

of two-covariant symbols of the bounded operators. Defining the product of the two-covariant
symbols 〈F 〉2, 〈G〉2 ∈ B2(D× D) by

〈F 〉2 ∗λ 〈G〉2(Z†, V ) := cλ

∫
〈F 〉2(Z†,W)〈G〉2(W†, V )

〈Z|W〉〈W |V 〉
〈W |W〉〈Z|V 〉 dµ(W†,W)

(4.9)

one obtains the structure of C∗-algebra on B2(D× D).
The quotient map B2(D× D) → B2(D× D)/kerFλ and the isomorphism B2(D×

D)/kerFλ ∼= B2(D× D) defines the epimorphism

π : B2(D× D) −→ B2(D× D) (4.10)

of the algebra with involution (B2(D× D), •λ) on the C∗-algebra (B2(D× D), ∗λ). Similarly the
inclusion map

ι : B2(D× D) ↪→ B2(D× D) (4.11)

is the monomorphism of C∗-algebra (B2(D× D), ∗λ) to the algebra (B2(D× D), •λ).
In the case under consideration the coherent state map Kλ : D → CP(H) is holomorphic and

D is a simply connected domain. Hence one can reconstruct the two-covariant symbol 〈F 〉2 of
the bounded operator F ∈ L∞(H) from its Berezin covariant symbol

〈F 〉(Z†, Z) := 〈Z|FZ〉
〈Z|Z〉 . (4.12)

The reconstruction is given by the analytic continuation of 〈F 〉 from the diagonal δ : D ∼= ∆ ↪→
D× D to the product D× D. As a result we obtain the linear isomorphism

c : B(D)
∼→B2(D× D) (4.13)

of the vector space B(D) := {〈F 〉 : F ∈ L∞(H)} of Berezin covariant symbols with B2(D× D).
The map (4.13) is inverse to the restriction map

δ∗ : B2(D× D) � 〈F 〉2 −→ 〈F 〉2 ◦ δ ∈ B(D). (4.14)

Hence one also defines the product

f ∗λ g := δ∗(c(f ) ∗λ c(g)) (4.15)

of f, g ∈ B(D), which is given explicitly by

(f ∗λ g)(Z†, Z) = cλ

∫
D

f (Z†, V )g(V †, Z)
∣∣∣aλ(Z†, V )

∣∣∣2 dµ(V †, V ), (4.16)
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where

aλ(Z†, V ) := 〈Z|V 〉√〈Z|Z〉〈V |V 〉 (4.17)

is the transition amplitude between the coherent states Kλ(Z) and Kλ(V ). For brevity, by f and g
in (4.15) we denoted the Berezin covariant symbols of F,G ∈ L∞(H).

Let us visualize the morphisms defined above in the following diagram

(4.18)

The notions of covariant and contravariant symbols were introduced by Berezin and their
importance in various aspects of quantization was shown in [20,21]. The two-contravariant and
two-covariant symbols of Schatten class operators and bounded operators were introduced and
studied in [22].

In the following proposition we will mention a few properties of the quantum scalar conformal
phase space M++ and its C∗-subalgebra M++

pol .

Proposition 5.

(i) The autorepresentation of M++
pol in L∞(H) is irreducible and P++

pol ∩ P++
pol = CI.

(ii) M++
pol is weakly (strongly) dense in L∞(H).

(iii) M++
pol contains the ideal L0(H) of compact operators. Thus any ideal of M++

pol , which

autorepresentation in H is irreducible, also contains L0(H).
(iv) M++

pol is conformally invariant, i.e. Uλ(g)M++
pol Uλ(g)† ⊂ M++

pol for g ∈ SU(2, 2).

(v) P++
pol ∩ L0(H) = {0}.

(vi) L0(H) � CommM++
pol , where CommM++

pol is commutator ideal of M++
pol .

(vi) The statements (i), (ii), (iii), (v), and (vi) are valid also for M++ and P++.

Proof.

(i) Let us denote by P the orthogonal projector defined by decomposition of H on the Hilbert
subspaces irreducible with respect to M++

pol . Let us define p ∈ L2O(D, dµλ) by

p(Z) :=
〈
Z

∣∣∣∣∣P
∣∣∣∣∣
0 0

0 0

〉
. (4.19)
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Since

a(f )†P = Pa(f )† (4.20)

for each f ∈ Pol(D̄) then from (3.38) and (4.20) one has

(Iλ ◦ P ◦ I−1
λ )Iλ

(∣∣∣∣∣
j m

j1 j2

〉)
= pIλ

(∣∣∣∣∣
j m

j1 j2

〉)
. (4.21)

Let us observe that Iλ ◦ P ◦ I−1
λ is the operator of multiplication by the holomorphic function

p andP2 = P �= 0 andD is connected set. Thusp ≡ 1 and from (4.21) we obtain thatP = I,
what proves irreducibility of M++

pol . If x ∈ P++
pol ∩ P++

pol then it commutes with any element

of M++
pol . So x ∈ CI.

(ii) It follows from (i) and from the von Neumann bicommutant theorem.
(iii) Let us take the operator F ∈ L∞(H) which has finite number of nonzero matrix elements

in the orthonormal basis (3.7). Then its two-covariant symbol is given by

〈F 〉2(Z†, V ) =
∑

(j,m, j1, j2) ∈ Φ
(j′,m′, j′1, j

′
2) ∈ Φ

(det(E − Z†V )λ∆jmj1j2
(Z†))

×
〈
j m

j1 j2

∣∣∣∣∣F
∣∣∣∣∣
j′ m′

j′1 j′2

〉
∆
j′m′
j′1j

′
2
(V ), (4.22)

where Φ is a finite index set. The operator

∑
(j,m,j1,j2)∈Φ

(j′,m′,j′1,j
′
2)∈Φ

∆
jm
j1j2

(A†)

〈
j m

j1 j2

∣∣∣∣∣F
∣∣∣∣∣
j′ m′

j′1 j′2

〉
∆
j′m′
j′1j

′
2
(A) (4.23)

belongs to M++
pol and has the same two-covariant symbol as operator F. Thus we gather that

finite rank operator F is equal to (4.23) what implies that F ∈ M++
pol . So from the fact that

L0(H) ∩ M++
pol �= {0} and Theorem 2.4.9 in [23] we see that L0(H) ⊂ M++

pol .

(iv) Since M++
pol is generated by P++

pol , the statement follows from Proposition 3.

(v) Let f ∈ C(D̄) and (Fλ ◦ ι ◦ c)(f ) belongs to L0(H) and P++
pol then its spectrum is discrete

and equal to f (D̄) at the same time, which leads to a contradiction.
(vi) From (iii) one has that |φ〉〈ψ| ∈ M++

pol for φ,ψ ∈ H. Additionally one has

|φ〉〈ψ| = (|φ〉〈v|)(|v〉〈ψ|), (4.24)

|φ〉〈v| = [|φ〉〈η|, |η〉〈v|] (4.25)

if v, η ∈ H satisfy 〈v|v〉 = 〈η|η〉 = 1 and 〈v|ψ〉 = 0. Hence L0(H) ⊂ CommM++
pol .
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In order to show that L0(H) � CommM++
pol we observe that the operator [a†11, a11] ∈

CommM++
pol in the basis (3.7) assumes the form

[a†11, a11]

∣∣∣∣∣
j m

j1 j2

〉

=

(λ− 2)((j1 + j2)(m+ 2j + λ) − (m+ 2j + λ)(m+ λ− 2)

− (j + j1 + 1)(j + j2 + 1))

(m+ 2j + λ− 1)(m+ 2j + λ)(m+ λ− 2)(m+ λ− 1)

∣∣∣∣∣
j m

j1 j2

〉
.

(4.26)

Thus it is diagonal and 1
4

2−λ
(m+λ−2)(m+λ−1) is the concentration point of its spectrum. So, it is

not compact operator.
(vii) It follows from the fact that P++

pol ⊂ P++. �

Now let us make few remarks about the Toeplitz (holomorphic) representation of M++,
i.e. the representation in the Hilbert space L2O(D, dµλ). One obtains it using the anti-linear
monomorphism Iλ : H → L2O(D, dµλ) given by (3.16):

Tλ(X) := Iλ ◦X ◦ I−1
λ : L2O(D, dµλ) → L2O(D, dµλ), (4.27)

where X ∈ M++. In the particular case when X ∈ P++ one has

Tλ(X)ψ(Z) = 〈X〉(Z)ψ(Z). (4.28)

So, T(P++
pol ) is realized by multiplication operators Mf , f ∈ H∞(D), having a continuous pro-

longation to D. Thus, the Toeplitz algebra Tλ(M++
pol ) is generated by the operators

Tλ(f ) = Πλ ◦Mf ◦Πλ, (4.29)

where f is a real analytic polynomial. The operator Mf : L2O(D, dµλ) → L2O(D, dµλ) is the
operator of multiplication by f ∈ C(D) and

(Πλψ)(Z) =
∫
D

〈Z|V 〉ψ(V †, V )
1

〈V |V 〉cλdµ(V †, V ) (4.30)

is the orthogonal projector Πλ of the Hilbert space L2(D, dµλ) on its Hilbert subspace
L2O(D, dµλ).

Using the representation (4.27) one can investigateM++
pol in the framework of theory of Toeplitz

algebras related to bounded symmetric domains, which were intensively investigated in series of
works [24–26]. scalar phase space M++.

The following basic statement can be viewed as a variant of the Coburn Theorem (see [27]).

Theorem 6. One has the exact sequence

0 −→ CommM++
pol

ι→M++
pol

πλ→C(M00) −→ 0 (4.31)

of C∗-algebra homomorphisms, where C(M00) is the C∗-algebra of continuous functions on the
conformally compactified Minkowski spaceM00.
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Proof. We begin observing that for f ∈ C(D̄) one has inequalities

‖Tλ(f )‖∞ ≤ ‖f‖sup ≤ ‖Qλ(f )‖∞, (4.32)

which follow from (4.29) and from (5.5) respectively. From the first inequality in (4.32) it follows
that the map

C(D̄) � f −→ Tλ(f ) := [Tλ(f )] ∈ M++
pol /CommM++

pol (4.33)

is a continuous epimorphism of the C∗-algebra C(D̄) on the commutative quotient C∗-algebra
M++

pol /CommM++
pol . Let us recall that the norm of [x] ∈ M++

pol /CommM++
pol is defined by

‖[x]‖inf = inf
ξ∈CommM++

pol

‖x+ ξ‖. (4.34)

Now let us consider the ideal ker Tλ ⊂ C(D̄). It follows from (iv) of Proposition 5 that
Uλ(g)(CommM++

pol )Uλ(g)† ⊂ CommM++
pol , so the conformal group SU(2, 2)/Z4 acts on the

quotient C∗-algebra M++
pol /CommM++

pol and the C∗-algebra epimorphism defined by (4.33) is a
conformally equivariant map, i.e.

(4.35)

for any g ∈ SU(2, 2)/Z4, where

(Σgf )(Z†, Z) := f ((σg(Z))†, σg(Z)) (4.36)

[Uλ(g)]([x]) := [Uλ(g)xUλ(g)†]. (4.37)

We conclude from the above that ker Tλ is an ideal in C(D̄) conformally invariant with respect
to the action (4.36). Since any ideal in C(D̄) consists of functions vanishing on some compact
subset K ⊂ D̄ the conformally invariant ideals correspond to the conformally invariant compact
subsets: D̄, ∂D = {Z ∈ Mat2×2(C) : det(E − Z†Z) = 0 and Tr(E − Z†Z) ≥ 0} andU(2) = {Z ∈
Mat2×2(C) : Z†Z = E}, where the last one is the Šilov boundary of D. In this way we show that
ker Tλ is equal to one of the following three ideals

I
D̄

= {0} ⊂ I∂D̄ ⊂ IU(2), (4.38)

where by IK we denote the ideal of functions equal to zero on K. The polynomial

φ(Z†, Z) := Tr(E − Z†Z) (4.39)

generates the ideal IU(2) and maps D̄ on the interval [0, 2]. Let us consider the positive operator

: Tr(E − A†A) := 2 − a
†
11a11 − a

†
12a12 − a

†
21a21 − a

†
22a22, (4.40)

which is diagonal, with

: Tr(E − A†A) :

∣∣∣∣∣
j m

j1 j2

〉
= 2(λ− 2)(m+ j + λ− 1)

(m+ λ− 1)(m+ 2j + λ)

∣∣∣∣∣
j m

j1 j2

〉
, (4.41)
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in the basis (3.7). We see from (4.41) that the spectrum σ of : Tr(E − A†A) : is contained in the
interval [0, 2] and the set

σa :=
{

λ− 2

m+ λ− 1
: m ∈ N ∪ {0} ∪ {∞}

}
(4.42)

is its approximative spectrum. The continuous function F : [0, 2] → R defined by

F (x) := x sin
(λ− 2)π

x
, (4.43)

vanishes on σa andF ◦ φ ∈ IU(2). SinceF|σa ≡ 0 and F assumes the same value at most on a finite
subset of σ \ σa, we conclude that F (: Tr(E − A†A) :) is a compact operator. Thus, by (iii) of
Proposition 5 F (: Tr(E − A†A) :) belongs to CommM++

pol . Let us take the sequence {Pn(x)}n∈N
of polynomials which uniformly approximate Pn → F the function F ∈ C([0, 2]). Thus one has

‖Pn ◦ φ − F ◦ φ‖sup →
n→∞ 0. (4.44)

From (4.44) and the first inequality of (4.32) we obtain

‖Tλ(Pn ◦ φ) − Tλ(F ◦ φ)‖∞ →
n→∞ 0. (4.45)

On the other hand, from the Gelfand–Naimark theorem and (4.44) we have

‖Pn(: Tr(E − A†A) :) − F (: Tr(E − A†A) :)‖∞ →
n→∞ 0. (4.46)

The operators Tλ(Pn ◦ φ) are polynomials of the creation and annihilation operators taken in the
anti-normal ordering, so they differ from the polynomials Pn(: Tr(E − A†A) :) modulo elements
of CommM++

pol . Thus, using also (4.45) and (4.46), we obtain that

0 = ‖[Tλ(F ◦ φ)] − [F (: Tr(E − A†A) :)]‖inf = ‖[Tλ(F ◦ φ)]‖inf = ‖Tλ(F ◦ φ)‖inf .

(4.47)

Summing up we conclude that F ◦ φ ∈ ker Tλ ∩ IU(2). Since it is easy to check that F ◦ φ /∈ I∂D
and that ker Tλ, is conformally invariant it follows that ker Tλ = IU(2) = IM00 .

Taking into account that (4.33) is an epimorphism of C∗-algebras, we state the following
isomorphisms M++

pol /CommM++
pol

∼= C(D̄)/IM00 ∼= C(M00). These isomorphisms give the epi-

morphism πλ : M++
pol → C(M00). �

Ending this section, let us remark that “neglecting” the non-commutativity of quantum complex
Minkowski space M++

pol we come back to the commutative C∗-algebra C(M00) whose spectrum

is given by the conformally compactified Minkowski spaceM00.

5. Quantization and physical interpretation

Analogously to the classical coordinate observables (Z,Z†) on M++ we shall use quantum
coordinate observables (A,A†) for the quantum phase space M++. Superposing morphisms
from diagram (4.18) we obtain the extension of this correspondence. In such a way we get the
isomorphism

Qλ := Fλ ◦ ι ◦ c : B(D) −→ L∞(H), (5.1)

which extends the quantization map,

a : H∞(D) � f −→ a(f ) ∈ L∞(H), (5.2)
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discussed in the previous section. Taking into account the properties

Qλ(f ∗λ g) = Qλ(f )Qλ(g), (5.3)

Qλ(f̄ ) = Qλ(f )∗, (5.4)

〈Qλ(f )〉λ = f, (5.5)

for f, g ∈ B(D), we see that the isomorphism Qλ gives a quantization procedure inverse to the
mean value map.

According to relation (5.5), Berezin covariant symbols are the classical observables corre-
sponding to the quantum observables realized by the bounded operators. As a particular case
the quantum phase space M++ ⊂ L∞(H) is obtained from 〈M++〉 ⊂ B(D) by the quantization
(5.1). However for physical reasons we are interested in the extension ofQλ : B(D) → L∞(H) to
a larger algebra of observables. For example it is reasonable to include in this scheme the elements
of the enveloping algebra of the conformal Lie algebra su(2, 2). The latter ones are represented
by unbounded operators in H which, according to the equivariance property (4.35), possess the
common domain given by the linear spanL(Kλ(M++)) of the setKλ(M++) of the coherent states.
Let us then define the vector space A++ of operators in H closed with respect to the operation
of conjugation and all elements of which possess L(Kλ(M++)) as a common domain. Therefore
for any operator F ∈ A++ the two-covariant and Berezin covariant symbols have sense.

In the following we will use the coherent state weak topology, i.e. An
coh→A if 〈Z|An|V 〉 →

〈Z|A|V 〉 for all Z,V ∈ D. It is a weaker topology than the weak one, as can be seen from the
following example. Let D � Zn = (1 − 1

n
)E, n ∈ N. We define the sequence of operators

An := n
|Zn〉〈Zn|
〈Zn|Zn〉 . (5.6)

It is easily observed that

∀Z,V ∈ D lim
n→∞〈Z|An|V 〉 = 0, (5.7)

thus An
coh→ 0. On the other hand supn∈N ‖An‖ = ∞, thus An is not weakly convergent.

The space A++ is closed with respect to coherent state weak topology. The quantum phase
spaceM++ is contained inA++ as a dense subset with respect to the coherent state weak topology.
For any F ∈ A++ its Berezin symbol f = 〈F 〉 ∈ RO++(D) is the real analytic function

f (Z†, Z) =
∑

fi11,i12,i21,i22,j11,j12,j21,j22Z̄
i11
11 Z̄

i12
12 Z̄

i21
21 Z̄

i22
22Z

j11
11 Z

j12
12 Z

j21
21 Z

j22
22 (5.8)

of the variables (Z†, Z). One extends the quantization (5.1) naturally to the space RO++(D) of
real analytic functions on D by setting

Qλ(f ) =
∑

fi11,i12,i21,i22,j11,j12,j21,j22a
†
11
i11
a
†
12i12a

†
21i21a

†
22i22a11i11a

i12
12 a

i21
21 a

i22
22

= : f (A†,A) :, (5.9)

where as usual, the colons : · : denote normal ordering. The infinite sum in (5.9) is taken in the
sense of coherent state weak topology. The extension of the product ∗λ, see (4.16), to the real
analytic Berezin symbols f, g ∈ RO++(D) is defined by

(f ∗λ g)(Z†, Z) := 〈Z†| : f (A†,A) :: g(A†,A) : |Z〉
〈Z†|Z〉 . (5.10)
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As an illustration let us consider the Berezin symbols

〈Uλ(g)〉(Z†, Z) = (det(CZ +D))−λ
(

det(E − Z†σg(Z))

det(E − Z†Z)

)−λ
(5.11)

and their quantum (A†,A)-coordinate representation

Uλ(g) = Qλ(〈Uλ(g)〉) =:

(
det(E − A†σg(A))

det(E − A†A)

)−λ
: (det(CA+D))−λ (5.12)

for the conformal group elements g ∈ SU(2, 2). In order to express the quantum four-momentum,
relativistic angular momentum, dilation and four-acceleration in terms of quantum coordinates
(A†,A) we differentiate Uλ(g(t)) given by (5.12) with respect to the parameter t ∈ R for an
appropriate choice of one-parameter subgroup R � t → g(t) ∈ SU(2, 2). As a result one obtains

Qλ(pµ) = iλ : (det(W−W†))−1Tr(σµ(W−W†)) :, (5.13)

Qλ(mµν) = iλ

(
1

2
Tr(σµW

†) : (det(W−W†))−1Tr(σν(W−W†)) :

− 1

2
Tr(σνW

†) : (det(W−W†))−1Tr(σµ(W−W†)) :

)
, (5.14)

Qλ(d) = iλTr(σµW
†) : (det(W−W†))−1Tr(σµ(W−W†)) : −2iλI, (5.15)

Qλ(aν) = iλ det(W†) : (det(W−W†))−1Tr(σν(W−W†)) :

− iλ1

2
Tr(σνW

†)Tr(σβW†) : (det(W−W†))−1Tr(σβ(W−W†)) :

+ + iλTr(σνW
†), (5.16)

where (W†,W) are matrix operator coordinates in A++ obtained from (A†,A) by the Caley
transform

W = i(A+ E)(A− E)−1, (5.17)

which has sense in the coherent state weak topology. After passing to the representation in the
Hilbert space L2O(T, dµµ) of holomorphic functions on the future tube T, square integrable
with respect to the measure (3.24), we rediscover from (5.13)–(5.16) the operators (3.20)–(3.23)
obtained by the Kostant–Souriau geometric quantization.

It follows from (3.20) that

[Qλ(pµ),Qλ(pν)] = 0. (5.18)

Using (2.21), we see from (5.18) that

[Qλ(yµ),Qλ(yν)] = 0. (5.19)

The creation operators

Qλ(w̄µ) = 1
2 Tr(σµW†) (5.20)
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in L2O(T, dµλ) are given as multiplication by the complex coordinate functions wµ, so they
commute. Thus, in addition to (5.18), we have

[Qλ(xµ),Qλ(xν)] = 0, (5.21)

[Qλ(xµ),Qλ(pν)] = −iδµν 1 (5.22)

for the quantum canonical coordinates (Qλ(xµ),Qλ(pν)).
Therefore we see that Heisenberg algebra generated by unbounded operators of four-momenta

Qλ(pν) and four-positionsQλ(xµ) = 1
2 Tr(σµ(W+W†)) is included in A++. The creation oper-

ators (5.20) and the annihilation ones

Qλ(wν) = 1
2 Tr(σνW), (5.23)

generate the Caley transforms of quantum polarizations P++
pol and P++

pol respectively. How-
ever their commutators [Qλ(w̄µ),Qλ(wν)] �= 0 do not have so simple form as it has place
in the case of quantum real polarization given by the canonical commutation relation
(5.22).

Let us now discuss the physical sense of the parameter λ ∈ R. So far, for technical reasons,
we assumed that it was dimensionless. However, as one sees from (2.21), λ has dimensions of
action. We therefore assume the Planck constant h as the natural unit for λ. After this we obtain

wµ = xµ + iλ
h

mc

pµ

mc
, (5.24)

where mc =
√
p2

0 − �p2. The quantity h
mc

is the Compton wavelength of the conformal particle.

For example for the proton h
mc

∼= 10−13 cm.

The quantities p
µ

mc
denote the components of relativistic four-velocity measured with the speed

of light as the unit. Dimensional analysis shows that in the limit λ → ∞ the theory describes
physical phenomena characterized by a space-time scale much bigger than the Compton scale
characteristic for the quantum phenomena. This physical argument is consistent with the following
asymptotic behavior of ∗λ-product

f ∗λ g ∼ fg, (5.25)

f ∗λ g− g ∗λ f ∼ iλ{f, g} (5.26)

for λ → ∞, where the right hand side of (5.25) is usual multiplication of functions and the right
side of (5.26) is the Poisson bracket (3.19). In order to show these asymptotic formulae we apply
the method used for the case of a general symmetric domain in [20]. The expressions (5.25), (5.26)
show the correspondences of the quantum description of the massive scalar conformal particle to
its classical mechanical description in the large space-time scale limit.

The quantum effects are described by the transition amplitude (4.17), which in the coordinates
(w̄µ,wν) is given by

aλ(v†, w) =
(

((w− w̄)2(v− v̄)2)1/2

(w− v̄)2

)λ
, (5.27)

where (w− v̄)2 = ηµν(wµ − v̄µ)(wν − v̄ν) and λ > 3. One sees from (5.27) that the transition

probability
∣∣aλ(v†, w)

∣∣2 from w to v as a function of v forms a narrow peak around the coherent
state w ∈ T if λ h

mc
≈ 0. A more detailed physical discussion can be found in [6].
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Białowieża, 1994.

[23] G.J. Murphy, C∗-algebras and Operator Theory, Academic Press, 1990.
[24] H. Upmeier, Toeplitz operators on bounded symmetric domains, Trans. Amer. Math. Soc. 280 (1983) 221–

237.
[25] H. Upmeier, Toeplitz, C∗-algebras on bounded symmetric domains, Ann. Math. 119 (1984) 549–576.
[26] H. Upmeier, Toeplitz Operators and Index Theory in Several Complex Variables, Birkhäuser Verlag, 1996.
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